澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

學術預告—An efficient second-order linear scheme for the phase field model of corrosive dissolution
作者:     日期:2019-12-04     來源:    

講座主題:An efficient second-order linear scheme for the phase field model of corrosive dissolution

主持人:李宏偉

工作單位:山東師范大學

講座時間:2019年12月7日(周六)下午16:10--16:50

講座地點:數學院341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

We propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based on the gradient flow of a free energy functional depending on a phase field variable and a single concentration variable. While classic backward differentiation formula (BDF) schemes have been used for time discretization in the literature, they require very small time step sizes owing to the strong numerical stiffness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based on the observation that the governing equation corresponding to the phase field variable is very stiff due to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock--Euler scheme with the classic Crank--Nicolson scheme for temporal integration of the spatially semi-discretized system, we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of the proposed scheme in two-dimensions, and we find that a time step size of $10^{-3}$ second for meshes with the typical spatial resolution $1~\mu$m is stable. Additionally, the proposed scheme is robust and does not suffer from any convergence issues often encountered by nonlinear Newton methods.

主講人介紹:

山東師范大學數學與統計學院副教授,碩士生導師。2012年獲香港浸會大學博士學位,2016-2017年獲國家留學基金委資助赴美國南卡羅來納大學進行學術交流。目前主要從事相場模型和無界區域上偏微分方程數值解法的研究工作。近年來先后主持國家自然科學基金、山東省自然科學基金3項,在J. Sci. Comput., Phys. Review E等雜志上發表論文多篇。

百家乐官网单跳双跳| 罗山县| 作弊百家乐赌具| 宜州市| 最新百家乐游戏机| 大富豪百家乐| 澳门百家乐官网心德| 澳门百家乐公试打法| 西宁市| 淘宝博百家乐的玩法技巧和规则| 百家乐官网赢的方法| 百家乐真人娱乐平台| 澳门百家乐官网哪家信誉最好| 全讯网新宝2| 2024属虎人全年运势| 长岭县| 百家乐免佣台| 自贡百家乐赌场娱乐网规则| 百家乐官网国际娱乐场| 中华百家乐娱乐城| 亚洲百家乐官网新全讯网| 大发888娱乐场玩什么| 澳门百家乐官网赌场网址| 百家乐注册平台排名| 百家乐官网知敌便能制胜| 威尼斯人娱乐城线路| 澳门百家乐官网规| 線上投注| 大发888娱乐城健账号| 澳门百家乐心得玩博| 百家乐官网打水策略| 全讯网新2代理| 百家乐官网游戏唯一官网网站| 微信百家乐群资源| 长赢百家乐官网赌徒| 姚记娱乐城信誉最好| 百家乐入庄闲概率| 百家乐桩闲落注点| 百家乐官网微笑不倒| 求购百家乐官网程序| 大发888 迅雷下载|