澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

學術預告—An efficient second-order linear scheme for the phase field model of corrosive dissolution
作者:     日期:2019-12-04     來源:    

講座主題:An efficient second-order linear scheme for the phase field model of corrosive dissolution

主持人:李宏偉

工作單位:山東師范大學

講座時間:2019年12月7日(周六)下午16:10--16:50

講座地點:數學院341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

We propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based on the gradient flow of a free energy functional depending on a phase field variable and a single concentration variable. While classic backward differentiation formula (BDF) schemes have been used for time discretization in the literature, they require very small time step sizes owing to the strong numerical stiffness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based on the observation that the governing equation corresponding to the phase field variable is very stiff due to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock--Euler scheme with the classic Crank--Nicolson scheme for temporal integration of the spatially semi-discretized system, we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of the proposed scheme in two-dimensions, and we find that a time step size of $10^{-3}$ second for meshes with the typical spatial resolution $1~\mu$m is stable. Additionally, the proposed scheme is robust and does not suffer from any convergence issues often encountered by nonlinear Newton methods.

主講人介紹:

山東師范大學數學與統計學院副教授,碩士生導師。2012年獲香港浸會大學博士學位,2016-2017年獲國家留學基金委資助赴美國南卡羅來納大學進行學術交流。目前主要從事相場模型和無界區域上偏微分方程數值解法的研究工作。近年來先后主持國家自然科學基金、山東省自然科學基金3項,在J. Sci. Comput., Phys. Review E等雜志上發表論文多篇。

24葬书-葬法| 百家乐技巧| 适合属虎做生意的名字| 大发888 真钱娱乐场| 王子百家乐官网的玩法技巧和规则 | 缅甸赌场| 鼎龙国际娱乐城| 澳门百家乐介绍| 大发888平台啥时候最赢钱| 月华百家乐官网的玩法技巧和规则 | 怎样玩百家乐官网才能| 大发888怎么| 澳门百家乐如何算牌| 和硕县| 百家乐娱乐代理| 最新百家乐官网出千赌具| 最好的棋牌游戏| 三合四局24向黄泉| 赌百家乐官网咋赢对方| 威尼斯人娱乐网最新地址| 澳门百家乐赢钱| 永利高百家乐官网开户| 大发888手机版官网| 玩百家乐去哪个平台好| 蓝盾百家乐官网打法| 大关县| 大发888老虎机平台| 打百家乐庄闲的技巧| 百家乐官网如何看| 百家乐官网网络视频游戏| 晓游棋牌游戏大厅下载| 芝加哥百家乐的玩法技巧和规则| 养狗对做生意风水好吗| 百家乐官网封号| 百家乐投注方法多不多| 百家乐官网赌博租| 网络百家乐必胜投注方法| 百家乐断缆赢钱| 在线百家乐官网下| 真人百家乐官网赌注| 怀仁县|