澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

百家乐代理在线游戏可信吗网上哪家平台信誉好安全 | 老虎百家乐官网的玩法技巧和规则 | 大集汇百家乐的玩法技巧和规则 | 百家乐官网牌机的破解法| 沙龙百家乐破解| 新太阳城娱乐| 百家乐游戏新| 北票市| 至尊百家乐官网娱乐平台| 有24天星名的罗盘| 皇冠百家乐代理网址| 易玩棋牌怎么样| 百家乐官网能赢到钱吗| 太阳城百家乐官网赌场| 百家乐讯特| 博客国际| 澳门百家乐娱乐开户| 贵宾百家乐的玩法技巧和规则| 澳门百家乐官网打法精华| 聚众玩百家乐的玩法技巧和规则| 百家乐官网必胜| 澳门百家乐官网博| 淘宝博百家乐的玩法技巧和规则| 菲律宾百家乐官网排行| 百家乐官网娱乐平台真人娱乐平台 | 百家乐官网游戏机技| 新全讯网网址g5vvv| 百家乐官网技巧开户网址| 百家乐官网游戏类型| 百家乐六手变化混合赢家打| 送彩金百家乐官网的玩法技巧和规则 | 闲和庄百家乐官网赌场娱乐网规则| 456棋牌游戏| 奔驰百家乐官网游戏电玩| 大发888游戏备用网址| 百家乐官网api| 优博娱乐网站| 太阳百家乐网| 百家乐玩法及细则| 娱乐城金赞| 大中华百家乐官网的玩法技巧和规则 |