澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

狮威百家乐娱乐网| 百家乐蓝盾在线现| 博彩网百家乐官网全讯网| 免费百家乐官网倍投软件| 百家乐路单破解器| 大发88817| 百家乐官网扎金花斗地主| 百家乐官网是娱乐场最不公平的游戏 | 大发888注册送彩金| 百家乐官网是骗人吗| 百家乐游戏机子| 大发888娱乐城欢迎您| 利好线上娱乐| 赌博百家乐官网探讨| 百家乐官网投注最好方法| 百家百家乐视频游戏世界| 星际百家乐官网娱乐城| 大发888娱乐城游戏下载| 娱乐城代理| 百家乐的保单打法| 百家乐官网心态研究| 威尼斯人娱乐城 196| 百家乐官网利来| 百家乐试玩| 广州百家乐官网酒店用品制造有限公司| 百家乐投注网中国体育| 南京百家乐官网赌博现场被抓| 百家乐赢退输进有哪些| 百家乐官网返点| 丰原市| 百家乐官网里靴是什么意识| 1368棋牌官网| 百家乐博彩平台| 百家乐官网存在千术吗| 真人百家乐官网蓝盾赌场娱乐网规则| 百家乐官网玩法说| 百家乐官网街机游戏下载| 大发888官网客户端| 做生意店子内风水布置| 百家乐官网AG| 肇东市|