澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

百家乐官网高手长胜攻略| 现金二八杠游戏| 百家乐官网网投注| 百家乐龙虎斗等| 百家乐官网庄闲的冷热| 筹码百家乐的玩法技巧和规则| 大发888娱乐场老虎机| 九州百家乐官网娱乐城| 九州百家乐娱乐城| 平乡县| 实战百家乐官网十大取胜原因百分百战胜百家乐官网不买币不吹牛只你能做到按我说的.百家乐官网基本规则 | 新利百家乐的玩法技巧和规则 | 百家乐园胎教网| 百家乐官网手机游戏下载| 威尼斯人娱乐城玩百家乐| 至尊百家乐官网娱乐网| 六合彩现场开奖| 百家乐分析软件下| 百家乐官网游戏程序出售| 百家乐官网庄闲必胜手段| 大发888促销代码| 百家乐庄闲筹码| 利博百家乐官网破解| 百家乐官网游戏官网| 棋牌游戏开发公司| 百家乐套路| 凯旋门百家乐娱乐城| 网上百家乐官网的赌博网站| 网上合法赌博网站| 威尼斯人娱乐城真假性| 送彩金百家乐平台| 广州百家乐官网赌城| 百家乐官网娱乐城网站| 星期八娱乐| 大发888娱乐鸿博娱乐| 百家乐官网赌博论坛博客| 六合彩特码开奖| YY百家乐的玩法技巧和规则| 赌场百家乐官网是如何| 金濠国际娱乐城| 百家乐押注最高是多少|