澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

三元名家論壇:Stability and error estimation based on a difference-spectral approximation for Cahn-Hilliard equation in complex domains
作者:     供圖:     供圖:     日期:2025-05-06     來源:    

講座主題:Stability and error estimation based on a difference-spectral approximation for Cahn-Hilliard equation in complex domains

專家姓名:安靜

工作單位:貴州師范大學

講座時間:2025年05月07日14:00-15:00

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

In this paper, we introduce and investigate a novel numerical method for solving the Cahn-Hilliard equation in two-dimensional complex domains by employing region transformation. Initially, we convert the fourth-order equation into a second-order coupled system and formulate its first- and second-order semi-implicit schemes. Afterwards, we transform them into the polar coordinates equivalents. By introducing a category of weighted Sobolev spaces, we elaborate on fully discrete schemes and offer a theoretical validation of their stability. In particular, the introduction of pole singularities and the nonlinearity of the coupling problem pose significant challenges to theoretical analysis. To address these challenges, we introduce a novel class of projection operators and establish their approximation properties. Leveraging these properties, we provide error estimates for the approximate solutions. To validate our theoretical insights and algorithm's efficacy, we conclude with a series of numerical examples.

主講人介紹:

安靜,貴州師范大學教授,博士生導師,主持完成國家自然科學基金項目3項,在研國家自然科學基金項目1項,在SIAM J NUMER ANAL、J SCI COMPUT、APPL NUMER MATH等期刊發表SCI學術論文30余篇。

大发888大发888娱乐城| 棋牌游戏评测网| 百家乐筹码真伪| 世界德州扑克大赛| 缅甸百家乐官网娱乐| 百家乐有公式| 百家乐官网经典路单| 至尊百家乐奇热网| 致胜百家乐官网的玩法技巧和规则| 百家乐群lookcc| 百家乐官网赌博大揭密| 打百家乐庄闲的技巧| 百家乐官网游戏怎么刷钱| 赙彩百家乐官网游戏规则| 网上百家乐做假| 属虎和属龙合伙做生意| 至尊百家乐娱乐场开户注册| 百家乐官网博彩技巧视频| 宝博百家乐娱乐城| 百家乐官网注册平台排名| 百家乐网络赌场| 百家乐官网隔一数打投注法| 威尼斯人娱乐城介| 百家乐大轮转| 百家乐官网2号说名书| 威尼斯人娱乐城求助| 博彩百家乐官网字谜总汇二丹东| 察哈| 百家乐赚钱方| 试玩区百家乐官网1000| 总统百家乐的玩法技巧和规则| 百家乐官网怎样概率大| 碧桂园太阳城二手房| 保单百家乐路单| 澳门百家乐官网真人斗地主| 大发888大家赢娱乐| 百家乐官网棋牌游戏开发| 现金百家乐官网技巧| 百家乐博彩吧| 百家乐投注平台导航网| 百家乐官网庄闲和赢率|