澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

最大的百家乐网站| 网上百家乐官网有没有假| 波音百家乐现金网投注平台排名导航| 德州扑克攻略| 无锡百家乐官网的玩法技巧和规则 | 大发888老虎机苹果版| 百家乐官网1个人| 缅甸百家乐视频| 百家乐官网singapore| 大发888怎么玩才赢| 百家乐官网平注法到6568| k7娱乐城开户| 新世百家乐的玩法技巧和规则| 百家乐官网注册18元体验金| 球探网足球比分| 百家乐玩牌| 网上百家乐官网公司| 百家乐官网发牌的介绍| 大发888娱乐场下载sampling id112| 百家乐娱乐城玩法| 高档百家乐官网桌子| 大发888认识的见解| 真人百家乐好不好玩| 怎么玩百家乐官网网上赌博| 棋牌新教室| ez百家乐技巧| 真人百家乐官网什么平台| 大发888葡京下载地址| 百家乐软件编辑原理| 百家乐官网2号说名书| bet365官方| rmb百家乐的玩法技巧和规则| 缅甸百家乐官网网络赌博解谜 | 游戏机百家乐官网的玩法技巧和规则 | 上海玩百家乐官网算不算违法| 大发888优惠码| 东海县| 百家乐大赌场娱乐网规则| 百家乐官网打印机破解| 现金百家乐游戏| 威尼斯人娱乐场棋牌|