澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

东丽区| 百家乐官网号游戏机| 百家乐官网模拟游戏下载| 百家乐保单机解码| 百家乐合法| 百家乐最新投注法| 风水上看做生意养金毛好吗| 百家乐视频裸聊| 澳门百家乐开户投注| 百家乐美国玩法| 516棋牌游戏下载| 龙山县| 永利高百家乐官网现金网| 百家乐官网编单短信接收| 百家乐筹码防伪定制| 大发888娱乐城优惠码lm0| 澳门美高梅娱乐| 百家乐官网娱乐皇冠世界杯| 金公主百家乐现金网| 免费百家乐追号软件| 大发888登录器下载| 在线赌博网站| 百家乐官网英皇娱乐场| 百家乐专业赌徒| 香港六合彩管家婆| 贵族娱乐城信誉| 永利百家乐官网娱乐场| 赌球记| 百家乐官网博欲乐城| 百家乐网上投注文章| 百家乐官网连输的时候| 德州百家乐官网赌博规则| 百家乐连赢的策略| 大发888玩家论坛| 真博线上娱乐| 来博百家乐现金网| 百家乐官网单双打法| 百家乐官网德州扑克桌布| 百家乐游戏开户网址| 百家乐网站| 百家乐9人桌|