澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Graphical semiregular representation of finite group
作者:     供圖:     供圖:     日期:2024-04-09     來(lái)源:    

講座主題:Graphical semiregular representation of finite group

專(zhuān)家姓名:馮衍全

工作單位:北京交通大學(xué)

講座時(shí)間:2023年04月13日15:00-16:00

講座地點(diǎn):數(shù)學(xué)院三樓會(huì)議室

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

A digraph or a graph Γ is called a digraphical or graphical regular representation (DRR or GRR for short) of a group G respectively, if Aut(Γ) is regular on the vertex set V(Γ). A group G is called a DRR group or a GRR group if there is a digraph or a graph Γ such that Γ is a DRR or GRR of G. Babai and Godsil classified finite DRR groups and GRR groups in 1980 and 1981, respectively. Then a lot of variants relative to DRR or GRR, with some restrictions on (di)graphs or groups, were investigated by many researchers. We extend regular representation to semiregular representation. For a positive integer m, a group G is called a DmSR group or a GmSR group, if there is a digraphical or graphical m-semiregular representation of G, that is, a regular digraph or a graph Γ such that Aut(Γ) is semiregular on V(Γ) with m orbits. Clearly, D1SR and G1SR groups are the DRR and GRR groups. In this talk, we review some progress on DmSR groups and GmSR groups for all positive integer m, and their variants by restricting (di)graphs or groups.

主講人介紹:

馮衍全,北京交通大學(xué)二級(jí)教授,政府特殊津貼獲得者,獲教育部自然科學(xué)二等獎(jiǎng)。從事群、圖及互連網(wǎng)絡(luò)研究工作,在Journal of Combinatorial Theory, Series A、Journal of Combinatorial Theory, Series B、Journal of Algebra等國(guó)際著名期刊上發(fā)表學(xué)術(shù)論文150篇。主持完成國(guó)家自然科學(xué)基金10余項(xiàng),目前主持國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng)、國(guó)際合作研究項(xiàng)目2項(xiàng)。擔(dān)任國(guó)際代數(shù)組合權(quán)威期刊Journal of Algebraic Combinatorics等編委,擔(dān)任中國(guó)數(shù)學(xué)會(huì)理事、中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)理事、中國(guó)運(yùn)籌學(xué)會(huì)圖論組合學(xué)分會(huì)常務(wù)理事等。

百家乐官网技巧介绍| 百家乐官网澳门有网站吗| 大发888游戏平台hg dafa888 gw| 澳门百家乐官网要注意啥| 百家乐官网tt娱乐场| 百家乐接线玩法| 十大博彩网| 速博百家乐官网的玩法技巧和规则 | 全讯网888| 百家乐官网哪家赌安全| 百家乐丽| 新濠百家乐官网的玩法技巧和规则 | 永利博百家乐游戏| 德州扑克在线游戏| 百家乐官网游戏程序下载| 悦榕庄百家乐的玩法技巧和规则 | 百家乐官网赌博代理合作| 网上百家乐娱乐场开户注册| 莱州市| 武隆县| 大发888黄金版下载| 大连百家乐官网食品| 长乐坊百家乐官网娱乐城| 百家乐规则以及玩法 | 三晋棋牌中心| 百家乐赌博策略论坛| 澳门百家乐官网群策略| 宝博娱乐城开户| 百家乐最新分析仪| 百家乐官网现金网信誉排名| 尚义县| 民勤县| 百家乐网页游戏| 百家乐免費游戏| 百家乐官网的必赢方法| 宝马会娱乐城返水| 百家乐西园二手房| 新东方百家乐官网娱乐城| 澳门百家乐会出老千吗| 百家乐官网游戏机论坛| 电子百家乐官网博彩正网|