澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Graphical semiregular representation of finite group
作者:     供圖:     供圖:     日期:2024-04-09     來(lái)源:    

講座主題:Graphical semiregular representation of finite group

專(zhuān)家姓名:馮衍全

工作單位:北京交通大學(xué)

講座時(shí)間:2023年04月13日15:00-16:00

講座地點(diǎn):數(shù)學(xué)院三樓會(huì)議室

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

A digraph or a graph Γ is called a digraphical or graphical regular representation (DRR or GRR for short) of a group G respectively, if Aut(Γ) is regular on the vertex set V(Γ). A group G is called a DRR group or a GRR group if there is a digraph or a graph Γ such that Γ is a DRR or GRR of G. Babai and Godsil classified finite DRR groups and GRR groups in 1980 and 1981, respectively. Then a lot of variants relative to DRR or GRR, with some restrictions on (di)graphs or groups, were investigated by many researchers. We extend regular representation to semiregular representation. For a positive integer m, a group G is called a DmSR group or a GmSR group, if there is a digraphical or graphical m-semiregular representation of G, that is, a regular digraph or a graph Γ such that Aut(Γ) is semiregular on V(Γ) with m orbits. Clearly, D1SR and G1SR groups are the DRR and GRR groups. In this talk, we review some progress on DmSR groups and GmSR groups for all positive integer m, and their variants by restricting (di)graphs or groups.

主講人介紹:

馮衍全,北京交通大學(xué)二級(jí)教授,政府特殊津貼獲得者,獲教育部自然科學(xué)二等獎(jiǎng)。從事群、圖及互連網(wǎng)絡(luò)研究工作,在Journal of Combinatorial Theory, Series A、Journal of Combinatorial Theory, Series B、Journal of Algebra等國(guó)際著名期刊上發(fā)表學(xué)術(shù)論文150篇。主持完成國(guó)家自然科學(xué)基金10余項(xiàng),目前主持國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng)、國(guó)際合作研究項(xiàng)目2項(xiàng)。擔(dān)任國(guó)際代數(shù)組合權(quán)威期刊Journal of Algebraic Combinatorics等編委,擔(dān)任中國(guó)數(shù)學(xué)會(huì)理事、中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)理事、中國(guó)運(yùn)籌學(xué)會(huì)圖論組合學(xué)分會(huì)常務(wù)理事等。

网上百家乐官网如何作假| 兰桂坊百家乐官网的玩法技巧和规则 | 百家乐官网取胜秘笈| 大众百家乐官网娱乐城| 宝龙百家乐官网的玩法技巧和规则| 百家乐官网统计工具| 网上百家乐有哪些玩法| 玩百家乐的好处| 面对面棋牌游戏| 利津县| 至尊百家乐官网娱乐场| 百家乐官网博赌城| 百家乐视频软件| 索罗门百家乐的玩法技巧和规则 | 金沙百家乐官网的玩法技巧和规则| 百家乐官网专打方法| 网络百家乐模拟投注| 百家乐技巧开户| 现金梭哈| 百家乐官网庄闲比| 百家乐赌博牌路分析| 皇冠现金投注网| 百家乐官网和的几率| 24山度数| 浩博真人娱乐| 赌博百家乐官网赢钱方法| 查找百家乐官网群| 大赢家娱乐城官方网| 百家乐官网猜大小规则| 新利国际网上娱乐| 易胜博百家乐官网下载| 百家乐试玩账户| 虹口区| 大发888 迅雷下载| 川宜百家乐官网破解版| 百家乐扑克玩法| 婺源县| 大发888怎么注册不了| 澳门百家乐官网有赢钱的吗| 百家乐官网庄不连的概率| 利都百家乐官网国际娱乐网|