澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Graphical semiregular representation of finite group
作者:     供圖:     供圖:     日期:2024-04-09     來(lái)源:    

講座主題:Graphical semiregular representation of finite group

專(zhuān)家姓名:馮衍全

工作單位:北京交通大學(xué)

講座時(shí)間:2023年04月13日15:00-16:00

講座地點(diǎn):數(shù)學(xué)院三樓會(huì)議室

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

A digraph or a graph Γ is called a digraphical or graphical regular representation (DRR or GRR for short) of a group G respectively, if Aut(Γ) is regular on the vertex set V(Γ). A group G is called a DRR group or a GRR group if there is a digraph or a graph Γ such that Γ is a DRR or GRR of G. Babai and Godsil classified finite DRR groups and GRR groups in 1980 and 1981, respectively. Then a lot of variants relative to DRR or GRR, with some restrictions on (di)graphs or groups, were investigated by many researchers. We extend regular representation to semiregular representation. For a positive integer m, a group G is called a DmSR group or a GmSR group, if there is a digraphical or graphical m-semiregular representation of G, that is, a regular digraph or a graph Γ such that Aut(Γ) is semiregular on V(Γ) with m orbits. Clearly, D1SR and G1SR groups are the DRR and GRR groups. In this talk, we review some progress on DmSR groups and GmSR groups for all positive integer m, and their variants by restricting (di)graphs or groups.

主講人介紹:

馮衍全,北京交通大學(xué)二級(jí)教授,政府特殊津貼獲得者,獲教育部自然科學(xué)二等獎(jiǎng)。從事群、圖及互連網(wǎng)絡(luò)研究工作,在Journal of Combinatorial Theory, Series A、Journal of Combinatorial Theory, Series B、Journal of Algebra等國(guó)際著名期刊上發(fā)表學(xué)術(shù)論文150篇。主持完成國(guó)家自然科學(xué)基金10余項(xiàng),目前主持國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng)、國(guó)際合作研究項(xiàng)目2項(xiàng)。擔(dān)任國(guó)際代數(shù)組合權(quán)威期刊Journal of Algebraic Combinatorics等編委,擔(dān)任中國(guó)數(shù)學(xué)會(huì)理事、中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)理事、中國(guó)運(yùn)籌學(xué)會(huì)圖論組合學(xué)分會(huì)常務(wù)理事等。

百家乐官网怎样投注好| 皇家百家乐的玩法技巧和规则| 吉林省| 百家乐下注几多| 百家乐怎样赢| 百家乐投注玩多少钱| 真人百家乐新开户送彩金| 百家乐官网透视用设备| 百家乐小路单图解| 百家乐官网赌机破解| 大发888好吗| 下三元八运24山详解| 百家乐官网注册赠分| 百家乐那里最好| 皇冠百家乐代理网| 玉田县| 百家乐计划工具| 百家乐官网微笑玩| 呼和浩特市| 大发888官方免费下载| 皇冠百家乐代理网| 百家乐官网排名| 澳门凯旋门娱乐城| 赌博百家乐的玩法技巧和规则| 百家乐官网龙虎扑克牌游戏技巧打| 郴州市| 大发888扑克合营商| 百家乐庄闲桌子| 立博开户| 电玩百家乐的玩法技巧和规则| 瑞士百家乐官网的玩法技巧和规则| 24山吉凶| 网上百家乐官网真实度| 百家乐伴侣| 新利百家乐官网的玩法技巧和规则 | 威尼斯人娱乐城澳门赌场| 路冲铺面能做生意吗| 南京百家乐官网赌博现场被抓| 黔西| 998棋牌游戏下载| 吕百家乐赢钱律|