澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics
作者:     供圖:     供圖:     日期:2022-08-25     來源:    

講座主題:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics

專家姓名:嚴(yán)運(yùn)安

工作單位:魯東大學(xué)

講座時(shí)間:2022年8月29日10:00-11:00

講座地點(diǎn):物電學(xué)院1511報(bào)告廳

主辦單位:煙臺(tái)大學(xué)物理與電子信息學(xué)院

內(nèi)容摘要:

The stochastic scheme is a fruitful tool for simulating the challenging non-Markovian quantum dynamics. Its performance at long time, however, degrades due to the intrinsic fast increase in the variance of the quantum Brownian motion. This talk presents the recent progress on developing the stochastic Liouville equations with piecewise stationary noises. Starting from a conventional stochastic scheme, we can always decompose the involved noises into two parts: the principal part assuming piecewise correlations and the auxiliary part recovering the full correlation. A partial stochastic average over the auxiliary noises yields a stochastic Liouville equation that only involves noises with piecewise correlations and can hence be averaged separatedly for different time intervals. Meanwhile the dissipative influence of the auxiliary noises is rigorously incorporated with integrals over the functional derivatives with respect to the principal noises. The working equation now assumes a similar structure to the non-Markovian quantum state diffusion. Thanks to the noise disentanglement in different time intervals, we can perform piecewise ensemble average and serve the average of the preceding interval as the initial condition of the subsequent propagation. This strategy avoids the long-time stochastic average and the corresponding statistical errors will be saturated at long times. This talk will give numerical results for the spontaneous decay of two-state atoms and the spin-boson model and shows that the suggested method enables us to simulate the long-time quantum dissipative dynamics with long memories in the non-perturbative regime.

主講人介紹:

嚴(yán)運(yùn)安,魯東大學(xué)教授。2002年于中國科學(xué)院理論物理研究所獲博士學(xué)位,2002-2012年,先后在中國科學(xué)院化學(xué)研究所、美國德克薩斯理工大學(xué)、德國柏林自由大學(xué)、德國羅斯托克大學(xué)和日本九州大學(xué)進(jìn)行博士后和訪問學(xué)者研究,2012年加入貴州師范學(xué)院,2018年加入魯東大學(xué)。嚴(yán)運(yùn)安教授目前的研究方向是發(fā)展新方法模擬凝聚相中分子體系的耗散動(dòng)力學(xué)。

百家乐真人博彩的玩法技巧和规则| 哪个百家乐最好| 久胜线上娱乐| 金盾百家乐官网网址| 百家乐小77论坛| 皇冠国际现金投注网| 百家乐官网多少钱| 百家乐官网高| 威尼斯人娱乐平台网上百家乐| 百家乐官网神仙道官网| 百家乐代理打| 百家乐官网二代皇冠博彩| 威尼斯人娱乐平台最新地址| 网络百家乐官网游戏机怎么破解 | 赌场风云| 网络百家乐真假| 德州扑克在线玩| 百家乐官网大小点桌子| 易胜博百家乐官网作弊| 德州扑克算法| 百家乐官网策略网络游戏信誉怎么样 | 足球赌博网站| 百合百家乐的玩法技巧和规则| 百家乐官网必胜打| 百家乐官网固定打法| 百家乐模拟游戏下载| 百家乐官网视频对对碰| 大发888娱乐官方下载| 百家乐人生信条漫谈| 百家乐官网正品地址| 巴厘岛百家乐官网娱乐城| 百家乐官网娱乐城博彩| 棋牌游戏大厅| 威尼斯人娱乐城老品牌lm0| 皇室百家乐娱乐城| 百家乐官网庄家怎样赚钱| 百家乐官网打庄技巧| 宝马会娱乐城网址| 百家乐轮盘一体机厂家| 太阳城百家乐红利| 百家乐官网娱乐城优惠|