澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics
作者:     供圖:     供圖:     日期:2022-08-25     來源:    

講座主題:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics

專家姓名:嚴(yán)運(yùn)安

工作單位:魯東大學(xué)

講座時(shí)間:2022年8月29日10:00-11:00

講座地點(diǎn):物電學(xué)院1511報(bào)告廳

主辦單位:煙臺(tái)大學(xué)物理與電子信息學(xué)院

內(nèi)容摘要:

The stochastic scheme is a fruitful tool for simulating the challenging non-Markovian quantum dynamics. Its performance at long time, however, degrades due to the intrinsic fast increase in the variance of the quantum Brownian motion. This talk presents the recent progress on developing the stochastic Liouville equations with piecewise stationary noises. Starting from a conventional stochastic scheme, we can always decompose the involved noises into two parts: the principal part assuming piecewise correlations and the auxiliary part recovering the full correlation. A partial stochastic average over the auxiliary noises yields a stochastic Liouville equation that only involves noises with piecewise correlations and can hence be averaged separatedly for different time intervals. Meanwhile the dissipative influence of the auxiliary noises is rigorously incorporated with integrals over the functional derivatives with respect to the principal noises. The working equation now assumes a similar structure to the non-Markovian quantum state diffusion. Thanks to the noise disentanglement in different time intervals, we can perform piecewise ensemble average and serve the average of the preceding interval as the initial condition of the subsequent propagation. This strategy avoids the long-time stochastic average and the corresponding statistical errors will be saturated at long times. This talk will give numerical results for the spontaneous decay of two-state atoms and the spin-boson model and shows that the suggested method enables us to simulate the long-time quantum dissipative dynamics with long memories in the non-perturbative regime.

主講人介紹:

嚴(yán)運(yùn)安,魯東大學(xué)教授。2002年于中國科學(xué)院理論物理研究所獲博士學(xué)位,2002-2012年,先后在中國科學(xué)院化學(xué)研究所、美國德克薩斯理工大學(xué)、德國柏林自由大學(xué)、德國羅斯托克大學(xué)和日本九州大學(xué)進(jìn)行博士后和訪問學(xué)者研究,2012年加入貴州師范學(xué)院,2018年加入魯東大學(xué)。嚴(yán)運(yùn)安教授目前的研究方向是發(fā)展新方法模擬凝聚相中分子體系的耗散動(dòng)力學(xué)。

威尼斯人娱乐城优惠条件| 德州扑克比赛视频| 百家乐国际娱乐| 网上的百家乐官网是假的吗| 网页百家乐的玩法技巧和规则| 板桥市| 真人百家乐是啥游戏| 茅台百家乐官网的玩法技巧和规则| 总统百家乐的玩法技巧和规则 | A8百家乐娱乐城| 锡林郭勒盟| 电子百家乐假在线哪| 买百家乐官网程序| 百家乐群dmwd| 永利博百家乐官网的玩法技巧和规则| 大玩家娱乐城| 百家乐真钱送彩金| 澳门百家乐官网经| 百家乐官网稳赢赌法| 博彩百家乐的玩法技巧和规则 | 大发888备用地址| 百家乐官网庄闲符号记| 大发888娱乐城游戏lm0| 威尼斯人娱乐开户送18| 金锁玉关24山砂水断| 線上投注| 真人百家乐海立方| 百家乐官网筹码方| 今晚六合彩开奖结果| 功夫百家乐的玩法技巧和规则| 百家乐官网赌博软件下载| 德州扑克 术语| 威尼斯人娱乐场xpjgw5xsjgw| 百家乐能作弊吗| 木棉百家乐官网的玩法技巧和规则 | 玩百家乐官网秘诀| 全讯网跑狗图| 乐天堂百家乐娱乐场| 深圳百家乐的玩法技巧和规则| 百家乐官网大转轮真人视讯 | 百家乐15人桌子|