澳门网络赌场排名开户-网络赌场注册送现金_百家乐正网_全讯网注册送体验金 (中国)·官方网站

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇-Stein variational gradient descent with local approximations
作者:     供圖:     供圖:     日期:2021-12-13     來(lái)源:    

講座主題:Stein variational gradient descent with local approximations

專家姓名:閆亮

工作單位:東南大學(xué)

講座時(shí)間:2021年12月16日 9:00-10:00

講座地點(diǎn):騰訊會(huì)議,會(huì)議ID:403792057

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

Bayesian computation plays an important role in modern machine learning and statistics to reason about uncertainty. A key computational challenge in Bayesian inference is to develop efficient techniques to approximate, or draw samples from posterior distributions. Stein variational gradient decent (SVGD) has been shown to be a powerful approximate inference algorithm for this issue. However, the vanilla SVGD requires calculating the gradient of the target density and cannot be applied when the gradient is unavailable or too expensive to evaluate. In this talk, we explore one way to address this challenge by the construction of a local surrogate for the target distribution in which the gradient can be obtained in a much more computationally feasible manner. More specifically, we approximate the forward model using a deep neural network (DNN) which is trained on a carefully chosen training set, which also determines the quality of the surrogate. To this end, we propose a general adaptation procedure to refine the local approximation online without destroying the convergence of the resulting SVGD. This significantly reduces the computational cost of SVGD and leads to a suite of algorithms that are straightforward to implement. The new algorithm is illustrated on a set of challenging Bayesian inverse problems, and numerical experiments demonstrate a clear improvement in performance and applicability of standard SVGD.

主講人介紹:

閆亮,東南大學(xué)副教授、博士生導(dǎo)師。主要從事不確定性量化、貝葉斯反問(wèn)題理論與算法的研究。2018年入選東南大學(xué)“至善青年學(xué)者”(A層次)支持計(jì)劃,2017年入選江蘇省高校“青藍(lán)工程”優(yōu)秀青年骨干教師培養(yǎng)對(duì)象。目前主持國(guó)家自然科學(xué)基金面上項(xiàng)目?jī)身?xiàng),主持完成國(guó)家自然科學(xué)基金青年項(xiàng)目和江蘇省自然科學(xué)基金青年項(xiàng)目各一項(xiàng)。已經(jīng)在《SIAM J. Sci. Comput.》、《Inverse Problems》、《J. Comput. Phys.》等國(guó)內(nèi)外刊物上發(fā)表30多篇學(xué)術(shù)論文.

威尼斯人娱乐城| 大发888易付168| 自贡百家乐官网赌场娱乐网规则| 百家乐官网桌布无纺布| tt娱乐城网站| 百家乐官网最长的缆| 罗盘24山八卦| 博彩网百家乐官网中和局| 百家乐官网翻天超清| 银河国际| 百家乐技巧在那里| 大发888游戏平台 34| 百家乐官网娱乐网真人娱乐网| 顶级赌场官网| 百家乐官网视频台球下载| 百家乐赌缆注码运用| 百家乐官网百家乐官网游戏| 网上百家乐骗局| 台安县| 澳门赌百家乐心法| 皇冠网店| 王子百家乐的玩法技巧和规则 | 香港百家乐的玩法技巧和规则| 六合彩开奖结果查询| 百家乐翻天快播| 百家乐官网赌坊| bet365 uo15| 赌博百家乐秘籍| 百家乐官网AG| 砀山县| 大发888娱乐城官方免费下载| 百家乐赌博程序| 七乐百家乐官网现金网| 大发888娱乐能借钱| 百家乐官网翻天粤语| 百家乐官网作弊工具| 网上真钱轮盘| 百家乐棋牌游戏正式版| 做生意风水方向怎么看| 百家乐官网电子路单谁| 棋牌百家乐官网程序破解|